AKA Investors’ Meeting 2016

Blockchain Unchained

Dr. Dirk Siegel
Leader Blockchain Institute
Deloitte
<table>
<thead>
<tr>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Which problem does Blockchain solve?</td>
</tr>
<tr>
<td>How does Blockchain work?</td>
</tr>
<tr>
<td>Which technology platforms exist for Blockchain?</td>
</tr>
<tr>
<td>How are our clients responding?</td>
</tr>
<tr>
<td>Which scenarios should our clients and we prepare for?</td>
</tr>
</tbody>
</table>
Which problem does Blockchain solve?
Asset ownership and transactions in history

Blockchain is a quantum leap for asset transactions / proof of ownership

Physical proof of ownership
Proof was made by physical existence
(German „besitzen“ = sit on top of the asset)

Analog proof of ownership
Proof by analog paper documentation
- e.g. Land registry, registered securities

Digital proof of ownership
Proof by digital centralized databases
- e.g. Apple Music, Bank Account

Blockchain proof of ownership
Proof of work in the Blockchain
- Immutable track of all transactions

Executing & securing transactions is
- A trillion € business
- The raison d’être of entire industries, e.g. FSI
- A central element of the organization of our societies and a legitimation of the state as such
- A source of frustration, inefficiency, gatekeeping and rent extraction
Blockchain enables asset transactions

Internet exchanges information whereas Blockchain exchanges assets

Internet transfers information by duplication

The Blockchain is an immutable, distributed ledger designed to transfer assets P2P thereby discarding intermediaries
How does Blockchain work?
How does a transaction in a Blockchain work

Adding a transaction into a Blockchain follows 8 steps:

1. **Transaction**

 Two parties agree on a transaction.

2. **Broadcasting**

 The transaction gets broadcasted to ‘miners’ (a network of decentralized computers) for processing.

3. **Verification**

 Nodes verify if the transaction is valid based on the rules of the network.

4. **Structuring**

 Transactions are gathered in blocks of pending transactions. A block contains a reference to a previous block and a group of transactions. The sequence creates a secure, interdependent chain.

5. **Proof-of-Work**

 Miners solve a complex mathematical puzzle - proof of work - potential solutions must prove the appropriate level of computing power was drained in solving.

6. **Broadcasting**

 The successful miner broadcasts its proof of work to other miners.

7. **Verification**

 Other miners verify the authenticity of the proof of work.

8. **Adding the Block**

 The verified block of transactions gets immutable added to the Blockchain.
What is a Blockchain?

A Blockchain is a digital, chronologically updated, distributed and cryptographically sealed record of all data transfer activity.

Digital
Almost any type of information can be expressed in digital format. Subsequently referenced through a ledger entry.

Chronologically updated
Permanent time stamped each block points and refers to the data stored in the previous block in the chain, so all blocks are linked to one another.

Distributed
Identical copies of all records are shared. Participants can independently verify information. Verification processes are not dependent on a centralized verification. If one node fails, the remaining can continue to operate ensuring availability and reliability.

Cryptographically sealed
Permanent time stamped each block points and refers to the data stored in the previous block in the chain, so all blocks are linked to one another.
Which technology platforms exist for Blockchain?
Examples of Blockchain platforms
The field is still growing and new platforms emerge on a weekly basis

<table>
<thead>
<tr>
<th>Protocol Features</th>
<th>Bitcoin</th>
<th>Ethereum</th>
<th>Hyperledger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional capabilities</td>
<td>• Cryptocurrency</td>
<td>• Notary (hash-stamping)</td>
<td>• Modular, support pluggable components at each layer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Smart Contracts</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Digital Assets</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consensus mechanism</td>
<td>• Byzantine Fault Tolerant (trustless)</td>
<td>• Byzantine Fault Tolerant (trustless)</td>
<td>• Trust required</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access and Permission</td>
<td>• Permissionless</td>
<td>• Permissionless</td>
<td>• Permissioned</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• There are permissioned derivatives</td>
<td></td>
</tr>
</tbody>
</table>
How are our clients responding?
Investors & leading industry players are focusing on Blockchain
There are strong concentrations on consortia to set standards in the market

Cost Savings
Predictions say Blockchain could reduce banks’ infrastructural costs by $15-$20 bn a year

Market movements
An increasing number of our key clients are joining consortia like R3 to investigate Blockchain or to set standards (Hyperledger)

Blockchain VC Investments are comparable to early investments in the Internet.
More than a billion dollars in VC has flowed to 120+ Blockchain-related startups

Venture Capital Investments
$1B+

VC Investment activity in Blockchain (in Mio $)

Blockchain 2014 $363
Internet 1995 $250
Blockchain 2015 $690
Internet 1996 $638
Blockchain Institute
Our vision and goals

Position Deloitte as the leading trusted partner of our clients in all areas impacted by the rise of Blockchain technology

Become the Center of Excellence for Blockchain technology in Deloitte Germany that builds the capabilities to advise our clients in the business, legal, tax risk, and audit impacts of Blockchain and to support them in all areas of its adoption.
Which scenarios should our clients and we prepare for?
Scenario Overview

Blockcracy

Survival of the biggest

One-eyed among the blind

Niche evolution

Trust in the established System

Technical Restrictions

There are no technical Restrictions

Technical Restrictions can not be solved

Institutions have lost the peoples trust

People have trust in the established System
Deloitte refers to one or more of Deloitte Touche Tohmatsu Limited, a UK private company limited by guarantee (“DTTL”), its network of member firms, and their related entities. DTTL and each of its member firms are legally separate and independent entities. DTTL (also referred to as “Deloitte Global”) does not provide services to clients. Please see www.deloitte.com/de/UeberUns for a more detailed description of DTTL and its member firms.

Deloitte provides audit, tax, financial advisory and consulting services to public and private clients spanning multiple industries; legal advisory services in Germany are provided by Deloitte Legal. With a globally connected network of member firms in more than 150 countries, Deloitte brings world-class capabilities and high-quality service to clients, delivering the insights they need to address their most complex business challenges. Deloitte’s more than 225,000 professionals are committed to making an impact that matters.

This presentation contains general information only, and none of Deloitte Consulting GmbH or Deloitte Touche Tohmatsu Limited (“DTTL”), any of DTTL’s member firms, or any of the foregoing’s affiliates (collectively, the “Deloitte Network”) are, by means of this presentation, rendering accounting, business, financial, investment, legal, tax, or other professional advice or services. In particular this presentation cannot be used as a substitute for such professional advice. No entity in the Deloitte Network shall be responsible for any loss whatsoever sustained by any person who relies on this presentation.